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CHAPTER 3

USING PROBABILISTIC ANALYSIS IN HUMAN HEALTH ASSESSMENT

3.0 INTRODUCTION

This chapter outlines how probabilistic analysis may be applied to human health risk assessments
in the Environmental Protection Agency’s (EPA) Superfund program. The paradigm for human health
risk assessment as described in EPA’s Risk Assessment Guidance for Superfund (U.S. EPA, 1989),
includes data collection/evaluation in addition to exposure and toxicity assessment and risk
characterization. Although the strategies and methods used in collecting and analyzing data can
significantly impact the uncertainty in a risk estimate, they are issues relevant to risk assessment in
general, and are addressed in other guidance documents, such as EPA’s Guidance for Data Useability in
Risk Assessment (U.S. EPA, 1992b). RAGS Volume 3: Part A focuses on a tiered approach for
incorporating quantitative information on variability and uncertainty into risk management decisions.

3.1 CHARACTERIZING VARIABILITY IN EXPOSURE VARIABLES

Exhibit 3-1 gives the general equation

used for calculating exposure, often expressed as A

an average Qally intake. In a point est}mate (AT, BT FOm TS

approach, single values (typically a mixture of

average and high-end values) are input into the Cx CRx BEF «x BD

equation. In probabilistic risk assessment (PRA), = Eq. 3-1

the only difference is that a probability BW = AT

distribution, rather than single value, is specified where,

for one or more variables. A Monte Carlo I = dailyintake ‘

simulation is executed by repeatedly selecting L = combmemd conesiizion

random values from each of these distributions CR = contactrate (ingestion, inhalation,
. . dermal contact)

and calculating the corresponding exposure and EF = exposure frequency

risk. For the.ma.]orl‘Fy of PRAS, it is expected that I = oyosi dumien

probability distributions will be used to BW = body weight

characterize inter-individual variability, which AT = averaging time

refers to true heterogeneity or diversity in a

population. Thus, variability in daily intake, for
example, can be characterized by combining
multiple sources of variability in exposure, such as ingestion rate, exposure frequency, exposure
duration, and body weight. Variability in chemical concentrations (Chapter 5 and Appendix C) and the
toxicity term in ecological risk assessment (Chapter 4) may also be considered in risk calculations.
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EXHIBIT 3-2

DEFINITIONS FOR CHAPTER 3

95% UCL for mean - The one-sided 95% upper confidence limit for a population mean; if a sample of size (n) was
repeatedly drawn from the population, the 95% UCL will equal or exceed the true population mean 95% of the
time. It is a measure of uncertainty in the mean, not to be confused with the 95" percentile (see below), which is a
measure of variability. As sample size increases, the difference between the UCL for the mean and the true mean
decreases, while the 95™ percentile of the distribution remains relatively unchanged.

95™ percentile - The number in a distribution that is greater than 95% of the other values of the distribution, and less
than 5% of the values. When estimated from a sample, this quantity may be equal to an observed value, or
interpolated from among two values.

Arithmetic Mean (AM) - A number equal to the average value of a population or sample. Usually obtained by summing
all the values in the sample and dividing by the number of values (i.e., sample size).

Assessment Endpoint - The specific expression of the population or ecosystem that is to be protected. It can be
characterized both qualitatively and quantitatively in the risk assessment.

Central Tendency Exposure (CTE) - A risk descriptor representing the average or typical individual in the population,
usually considered to be the arithmetic mean or median of the risk distribution.

Credible Interval - A range of values that represent plausible bounds on a population parameter. Credible intervals may
describe a parameter of an input variable (e.g., mean ingestion rate) or output variable (e.g., 95" percentile risk).
The term is introduced as an alternative to the term confidence interval when the methods used to quantify
uncertainty are not based entirely on statistical principles such as sampling distributions or Bayesian approaches.
For example, multiple estimates of an arithmetic mean may be available from different studies reported in the
literature—using professional judgment, these estimates may support a decision to describe a range of possible
values for the arithmetic mean.

CTE Risk - The estimated risk corresponding to the central tendency exposure.

Cumulative Distribution Function (CDF) - Obtained by integrating the PDF or PMF, gives the cumulative probability
of occurrence for a random independent variable. Each value ¢ of the function is the probability that a random
observation x will be less than or equal to c.

Exposure Point Concentration (EPC) - The average chemical concentration to which receptors are exposed within an
exposure unit. Estimates of the EPC represent the concentration term used in exposure assessment.

Frequency Distribution/Histogram - A graphic (plot) summarizing the frequency of the values observed or measured
from a population. It conveys the range of values and the count (or proportion of the sample) that was observed
across that range.

High-end Risk - A risk descriptor representing the high-end, or upper tail of the risk distribution, usually considered to
be equal to or greater than the 90™ percentile.

Low-end Risk - A risk descriptor representing the low-end, or lower tail of the risk distribution, such as the 5" or 25"
percentile.

Parameter - A value that characterizes the distribution of a random variable. Parameters commonly characterize the
location, scale, shape, or bounds of the distribution. For example, a truncated normal probability distribution may
be defined by four parameters: arithmetic mean [location], standard deviation [scale], and min and max [bounds].
It is important to distinguish between a variable (e.g., ingestion rate) and a parameter (e.g., arithmetic mean
ingestion rate).

Probability Density Function (PDF) - A function representing the probability distribution of a continuous random
variable. The density at a point refers to the probability that the variable will have a value in a narrow range about
that point.

Probability Mass Function (PMF) - A function representing the probability distribution for a discrete random variable.
The mass at a point refers to the probability that the variable will have a value at that point.

Reasonable Maximum Exposure (RME) - The highest exposure that is reasonably expected to occur at a site (U.S. EPA,
1989). The intent of the RME is to estimate a conservative exposure case (i.e., well above the average case) that is
still within the range of possible exposures.
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EXHIBIT 3-2
DEFINITIONS FOR CHAPTER 3— Continued
Sensitivity Analysis - Sensitivity generally refers to the variation in output of a model with respect to changes in the

values of the model’s input(s). Sensitivity analysis can provide a quantitative ranking of the model inputs based on
their relative contributions to model output variability and uncertainty. Common metrics of sensitivity include:

»__ Pearson Correlation Coefficient - A statistic 7 that measures the strength and direction of linear
association between the values of two quantitative variables. The square of the coefficient () is the
fraction of the variance of one variable that is explained by the variance of the second variable.

»  Sensitivity Ratio - Ratio of the change in model output per unit change in an input variable; also called
elasticity.

»  Spearman Rank Order Correlation Coefficient - A “distribution free” or nonparametric statistic » that
measures the strength and direction of association between the ranks of the values (not the values
themselves) of two quantitative variables. See Pearson (above) for 7.

Target Population - The set of all receptors that are potentially at risk. Sometimes referred to as the “population of
concern”. A sample population is selected for statistical sampling in order to make inferences regarding the target
population (see Appendix B, Section B.3.1, Concepts of Populations and Sampling).
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Figure 3-1 shows a hypothetical example of an input distribution for drinking water ingestion
rate. Assume that survey data for drinking water ingestion rates were compiled in order to select and fit a
probability distribution. One of the first steps in exploring the data set may be to plot a frequency
distribution. In the graph, the height of the bars (the y-axis) represents the relative frequency of ingestion
rates in the population and the spread of the bars (the x-axis) is the varying amounts of water ingested
(L/day). Since ingestion rate is a continuous random variable, the probability distribution can also be
represented graphically with a probability density function (PDF). Assume that the following parameters
are estimated from the sample: arithmetic mean=1.36, standard deviation=0.36, geometric mean=1.31,
and geometric standard deviation=1.30. These parameter estimates may be used to define a variety of
probability distributions, including a 2-parameter lognormal distribution. The fit of the lognormal
distribution can be evaluated by visual inspection using the PDF given by Figure 3-1, or by a lognormal
probability plot (see Appendix B).

The y-axis for a PDF is referred to as the probability density, where the density at a point on the
x-axis represents the probability that a variable will have a value within a narrow range about the point.
This type of graph shows, for example, that there is a greater area under the curve (greater probability
density) in the 1-2 L/day range than 0-1 L/day or 2-3 L/day. That is, most people reported consuming
1-2 L/day of drinking water. By selecting a lognormal distribution to characterize inter-individual
variability, we can state more precisely that 1 L/day corresponds to the 15" percentile and 2 L/day
corresponds to the 95™ percentile, so approximately 80% (i.e., 0.95-0.15=0.80) of the population is likely
to consume between 1 and 2 L/day of drinking water.
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Figure 3-1. Example of a frequency distribution for adult drinking water ingestion rates, overlaid by
a graph of the probability density function (PDF) for a lognormal distribution defined by the sample
statistics. The distribution represents inter-individual variability in water intakes and is characterized
by two parameters. Typically, the geometric mean (GM) and geometric standard deviation (GSD), or
the arithmetic mean (AM) and arithmetic standard deviation (SD) are presented to characterize a
lognormal distribution.
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3.1.1 DEVELOPING DISTRIBUTIONS FOR EXPOSURE VARIABLES

When site-specific data or representative surrogate data are available, a probability distribution
can be fit to that data to characterize variability. Appendix B describes how to fit distributions to data,
how to assess the quality of the fit and discusses topics such as the sensitivity of the tails of the
distribution to various PDFs, and correlations among variables. Many of the issues discussed below
regarding the use of site-specific data or surrogate data are relevant to both point estimate risk assessment
and PRA.

For the majority of the exposure variables, such as exposure duration, water intake rates, and
body weight, site-specific data will not be available. The risk assessor will have to either select a
distribution from existing sources, or develop a distribution from published data sets and data summaries.
Examples of sources for these distributions and data sets are EPA’s Exposure Factors Handbook (U.S.
EPA, 1997a,b,c), Oregon Department of Environmental Quality’s Guidance for Use of Probabilistic
Analysis in Human Health Risk Assessment (Oregon DEQ, 1998), and the scientific literature. An
appropriate PDF should be determined in collaboration with the regional risk assessor. The process by
which PDFs are to be selected and evaluated should be described in the workplan. EPA’s Superfund
program is in the process of developing a ranking methodology to evaluate data representativeness
relevant to various exposures scenarios. Following peer review and project completion, the results will
be posted on EPA Superfund web page.

ww At this time, EPA does not recommend generic or default probability
distributions for exposure variables.

Regardless of whether a PDF is derived from site-specific measurements or obtained from the
open literature, the risk assessor should carefully evaluate the applicability of the distribution to the
target population at the site. The distribution selected should be derived from the target population or
from a surrogate population that is representative of the target population at the site. For example, a
distribution based on homegrown vegetable consumption in an urban population would not be
representative for a farming population in the Midwest. If such a distribution were to be used, (and no
other data were available), the uncertainty and bias that this PDF would impart to the risk estimate should
be communicated to the risk decision makers.

For purposes of risk management decision making, the significance of not having site-specific
data should be evaluated in the context of representativeness and sensitivity analysis. If published data
are representative of the potentially exposed population, then site-specific data may be unnecessary. For
example, body weights of children and adults have been well studied from national surveys and can
generally be considered reasonable surrogates for use in site risk assessments. Furthermore, even if a
variable is likely to vary among different exposed populations, it may not contribute greatly to the
variance or uncertainty in risk estimates. In this case, surrogate data may also be used with confidence in
the risk estimate. In addition, the PRA may be simplified by using point estimates instead of probability
distributions for the “less sensitive” exposure variables. In part, the decision to use a point estimate in
lieu of a probability distribution must balance the benefit of simplifying the analysis and the
communication process (see Chapter 6), against the reduction (however small) in the variance of the risk
distribution. The utility of sensitivity analysis in identifying the important factors in a risk estimate is
discussed further below and in Appendix A.
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It is also important to evaluate the sample design and sample size when deciding to apply a
distribution to a specific site. Depending on the situation, a very large data set derived from a national
population may be more useful than a site-specific data set derived from a small, incomplete, or poorly
designed study. Appendix B provides additional discussion on how to evaluate the data and studies that
form the basis for a distribution. Often, the question arises regarding the appropriateness of combining
data sets to derive a PDF. Before combining data sets, a careful evaluation should be made of the
representativeness of the study populations, and the similarity in study designs and quality. In addition,
statistical tests may be used to determine whether or not data sets are compatible with a common
probability distribution (Hedges and Olkin, 1985; Stiteler et al., 1993). In general, risk assessors should
be reluctant to combine data sets for the purpose of developing a PDF that characterizes variability. Due
to the number of potential differences inherent in the study design, alternative data sets may provide a
better measure of uncertainty in the probability distribution and parameter estimates, rather than a means
of increasing the overall sample size for defining a single probability distribution. For example, if
multiple data sets are available, a more informative approach may be to incorporate each data set into the
PRA in a separate analysis, as a form of sensitivity analysis on the choice of alternative data sets.

Each probability distribution used in a Monte Carlo Analysis (MCA) should be presented with
sufficient detail that the analysis can be reproduced (see Chapter 1, Section 1.4, Condition #2). This
information may be presented in tabular and/or graphical summaries. Important information for a
summary table would include a description of the distribution type (e.g., lognormal, gamma, etc.), the
parameters that define the distribution (e.g., mean and standard deviation, and possibly upper and lower
truncation limits for a normal distribution), units, and appropriate references (see Table 3-6, for
example). The table should also indicate whether the distribution describes variability or uncertainty.
The report should discuss the representativeness of the data and why a particular data set was selected if
alternatives were available. Graphical summaries of the distributions may include both PDFs and
cumulative distribution functions (CDFs), and should generally be used to document distributions that
characterize site-specific data.

3.1.2 CHARACTERIZING Risk UsINnG PRA

Quantitative risk characterization involves evaluating exposure (or intake) estimates against a
benchmark of toxicity, such as a cancer slope factor or a noncancer hazard quotient. The general
equation used for quantifying cancer risk from ingestion of contaminated soil is shown in Exhibit 3-3,
and the equation for noncarcinogenic hazard is shown in Exhibit 3-4. A Hazard Index is equal to the sum
of chemical-specific Hazard Quotients.

At this time, this guidance does not propose probabilistic approaches for dose-response in human
health assessment and, further, discourages undertaking such activities on a site-by-site basis. Such
activities require contaminant-specific national consensus development and national policy development
(see Chapter 1, Section 1.4.1). Chapter 4 discusses methods for applying probabilistic approaches to
ecological dose-response assessment.

The probabilistic calculation of risk involves random sampling from each of the exposure
variable distributions. The output of this process is a distribution of risk estimates. When the calculation
of risk (or any other model endpoint) is repeated many times using Monte Carlo techniques to sample the
variables at random, the resulting distribution of risk estimates can be displayed in a similar fashion. The
type of summary graph used to convey the results of a MCA depends on the risk management needs. For
example, Chapter 1, Figure 1-3 shows how a PDF for risk might be used to compare the probabilistic
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estimate of the RME risk (e.g., 95" percentile) with a risk level of concern. This type of summary can
also be used to effectively illustrate the relationship between the RME risk determined from point
estimate and probabilistic approaches.

EXHIBIT 3-3

EQUATION FOR CANCER RISK

Risk = Dose » O5F

Example for Soil Ingestion

O fH= OFx FF = BD

Risk = w C5F
EW =« AT
where,
C = concentration in soil (mg/kg) ED = exposure duration (years)
IR = soil ingestion rate (mg/day) BW = body weight (kg)
CF = conversion factor (1E-06 kg/mg) AT = averaging time (days)
EF = exposure frequency (days/year) CSF = oral cancer slope factor (mg/kg-day)™!

EXHIBIT 3-4

EQUATION FOR NONCANCER HAZARD QUOTIENT

Daze Corcentration
ar

Hazard Chiatient =
D RfC

where,
RfD = reference dose, oral or dermally adjusted (mg/kg-day)
RfC = reference concentration, inhalation (ug/m?)

In addition, the CDF can be especially informative for illustrating the percentile corresponding to
a particular risk level of concern (e.g., cancer risk of 1E-04 or Hazard Index of 1). Figure 3-2 illustrates
both the PDF and CDF for risk for a hypothetical scenario. Factors to consider when applying the PDF
or CDF are discussed in Chapter 1, Exhibit 1-3. When in doubt about the appropriate type of summary to
use, both the PDF and CDF should be provided for all risk distributions. At a minimum, each summary
output for risk should highlight the risk descriptors of concern (e.g., 50, 90", 95®, and
99.9" percentiles). It can also be informative to include the results of the point estimate analysis—the
risks corresponding to the central tendency exposure (CTE) and the reasonable maximum exposure
(RME).
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Figure 3-2. Hypothetical PRA results showing a PDF (top panel) and CDF (bottom panel) for
cancer risk with selected summary statistics. The CDF rises to a maximum cumulative
probability of 1.0. The CDF clearly shows that the level of regulatory concern chosen for this
example (1E-06) falls between the 90™ and 95™ percentiles of the risk distribution.
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3.2 ROLE OF THE SENSITIVITY ANALYSIS

Prior to conducting a PRA, it is worthwhile to review several points pertaining to the sensitivity
analysis. As shown in Chapter 2 (Figures 2-1 and 2-2), sensitivity analysis can play an important role in
decision making at each tier of the tiered process. Beginning with Tier 1, a point estimate for risk should
be calculated prior to conducting a PRA. Based on the results of the point estimate, the risk assessor and
risk decision makers should determine whether a probabilistic analysis will offer additional benefit. One
factor in this decision may be the results of a sensitivity analysis. A primary objective of the sensitivity
analysis is to determine which variables and pathways most strongly influence the risk estimate. At
many Superfund sites, an estimate of cumulative risk considers contamination in multiple media, moving
through multiple pathways and interacting with a number of receptors. Depending on the complexity of
the site, and the modeling approaches, a risk assessment may involve one exposure pathway and few
variables, or multiple pathways with many variables (e.g., multimedia fate and transport models).
However, resources and time are often limited. The sensitivity analysis is invaluable in focusing these
limited resources on the most influential variables and pathways.

Several methods for conducting sensitivity analysis are described in Appendix A. It is important
to note that when a sensitivity analysis is performed and the major variables are identified, this does not
mean that the less influential pathways and variables should be eliminated from the risk assessment. It
means that because they are not major contributors to the variability or uncertainty in risk, they can be
described with point estimates without affecting the risk management decision. If distributions are
readily available for these less influential variables, one may use distributions. The key goal is to provide
a comprehensive risk characterization that is scientifically credible and sufficient for risk decision
making. The time and effort required to achieve various levels of complexity should be weighed against
the value of the information provided to the risk managers.

Additionally, if a variable is specified as influential in the sensitivity analysis, this does not
automatically mean that a distribution has to be developed for this variable. If the risk assessor feels that
data are simply not sufficient from which to develop a distribution, then a plausible point estimate can be
used. The risk assessor should be aware of a possible problem arising from using point estimates in the
absence of data adequate to support a distribution. If a variable has the potential to significantly impact
the risk outcome, and a very high-end or low-end point estimate is used in the PRA, this has the potential
to right-shift or left-shift the final distribution of risk. Even though there might not be enough data to
develop a distribution of variability for an influential variable, it would be prudent to communicate the
importance of this data gap to the risk decision makers, and perhaps run multiple simulations with several
plausible input distributions for that variable. Communication of this uncertainty may persuade the risk
decision makers to collect additional data to better define the variable.
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3.3 EXPOSURE POINT CONCENTRATION TERM

A brief discussion of the concentration term is provided below. A more complete discussion of
the concentration term in PRA is provided in Appendix C. The reader is also referred to Chapter 5 on
development of PRGs.

The major source of uncertainty in Superfund risk assessments is often incomplete knowledge of
the concentration of one or more chemicals in various exposure media. In any risk assessment, the
derivation of the concentration term will reflect assumptions about: (1) properties of the contaminant,

(2) the spatial and temporal variability in contamination, (3) the behavior of the receptor, and (4) the time
scale of the toxicity of the chemical(s).

Contaminant concentrations contacted by a receptor are likely to vary depending on the spatial
variability of contamination and the movements of the receptor. Different individuals may be exposed to
different concentrations based on inter-individual variability in activity patterns. If information regarding
activity patterns is unavailable, receptors are typically assumed to exhibit random movement such that
there is an equal probability of contacting any area within the exposure unit (EU). An EU is defined as
the geographical area in which a receptor moves and contacts contaminated medium during the period of
the exposure duration. In addition, in Superfund risk assessments, the toxicity criteria are often based on
health effects associated with chronic exposure (e.g., lifetime risk of cancer following chronic daily
intake over a period of 30 years). Hence, the most appropriate expression for the concentration term, for
the majority of risk assessments, is one that characterizes the long-term average exposure point
concentration within the EU.

= The most appropriate expression of the exposure point concentration term
for chronic exposure will characterize the long-term average concentration
experienced by a receptor within the exposure unit.

In point estimate risk assessments, the exposure point concentration term is usually calculated as
the 95% upper confidence limit (95% UCL) of the arithmetic mean because of the uncertainty associated
with estimating the true (i.e., population) mean concentration at a site. If the sampling density is sparse
relative to the size of the EU, the uncertainty may be high due to the relatively small number of
measurements available to estimate the mean concentration within the EU. The decision to use the upper
confidence limit to define the concentration term introduces a measure of protectiveness by reducing the
chance of underestimating the mean. Although there will be situations in which modeling variability in
concentration will be the appropriate choice (e.g., non-random movement within an EU, acute exposure
events, migration of groundwater contaminant plume, migration of fish, etc.), in most cases,
characterization of the concentration term will focus on uncertainty. Appendix C provides a more
complete discussion on characterizing both variability and uncertainty in the concentration term.

Table 3-1 summarizes a number of appropriate methods for characterizing uncertainty in the parameter of
an exposure variable, such as the arithmetic mean of the concentration term.
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34 CHARACTERIZING UNCERTAINTY IN EXPOSURE VARIABLES

Uncertainty is described as a lack of knowledge about factors affecting exposure or risk. To
evaluate regulatory options, risk assessors are expected to translate the available evidence, however
tentative, into a probability of occurrence of an adverse health effect. Data from a sample or surrogate
population are used to develop estimates of exposure and risk in a specific target population (see
Section 3.1.4 and Appendix B, Section B.3.1). This extrapolation requires assumptions and inferences
that have inherent strengths and limitations, and may bias the outcome of the risk estimate. For example,
a common assumption in risk assessments for carcinogens is that a contaminant concentration within the
boundaries of a hazardous waste site represents the concentration that a receptor is exposed to throughout
the period of exposure, with the corresponding dose averaged over the course of a lifetime. This
assumption may be conservative (i.e., result in overestimation of exposure) if it is unlikely that receptors
will be exposed at the hazardous waste site for the entire exposure duration. It is incumbent on the risk
assessor to clearly present the rationale for the assumptions used in a risk assessment, as well as their
implications and limitations.

U.S. EPA guidance, including the Exposure Assessment Guidelines (U.S. EPA, 1992a), Exposure
Factors Handbook (U.S. EPA, 1997a,b,c), and Guiding Principles for Monte Carlo Analysis (U.S. EPA,
1997d) have classified uncertainty in exposure assessment into three broad categories:

(1) Parameter uncertainty - uncertainty in values used to estimate variables of a model,

(2) Model uncertainty - uncertainty about a model structure (e.g., exposure equation) or intended
use; and

(3) Scenario uncertainty - uncertainty regarding missing or incomplete information to fully
define exposure.

Each source of uncertainty is described in detail below, along with strategies for addressing them in
PRA.

3.4.1 PARAMETER UNCERTAINTY

Parameter uncertainty may be the most readily recognized source of uncertainty that is quantified
in site-specific risk assessments at hazardous waste sites. Parameter uncertainty can occur in each step of
the risk assessment process from data collection and evaluation, to the assessment of exposure and
toxicity. Sources of parameter uncertainty may include systematic errors or bias in the data collection
process, imprecision in the analytical measurements, and extrapolation from surrogate measures to
represent the parameter of interest. For example, soil data collected only from the areas of highest
contamination, rather than the entire area that a receptor is expected to come into contact, will result in a
biased estimate of exposure.

In general, parameter uncertainty can be quantified at any stage of the tiered process, including
point estimate analysis (Tier 1), one-dimensional Monte Carlo analysis (1-D MCA) (Tier 2), and two-
dimensional Monte Carlo analysis (2-D MCA) (Tier 3). In the point estimate approach, parameter
uncertainty may be addressed in a qualitative manner for most variables. For example, the uncertainty
section of a point estimate risk assessment document might state that an absorption fraction of 100% was
used to represent the amount of contaminant in soil absorbed from the gastrointestinal (GI) tract, and as a
result, the risk estimate may overestimate actual risk. In addition, a sensitivity analysis may be
performed, wherein one input variable at a time is changed, while leaving the others constant, to examine
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the effect on the outcome. In the case of absorption from the GI tract, different plausible estimates of the
high-end, or RME absorption fraction might be used as inputs to the risk equation. The differences in the
risk estimates would reflect uncertainty in the RME absorption fraction.

Quantitative approaches for characterizing parameter uncertainty in exposure variables in a
Monte Carlo simulation are summarized in Table 3-1. If uncertainty in only a few parameter values is of
interest, multiple 1-D MCA simulations can yield the same results as a 2-D MCA simulation, but without
the time and effort of a 2-D MCA. An example illustrating this concept is given in Table 3-2. With
multiple 1-D MCA simulations, variability is characterized in one or more variables using probability
distributions for variability (PDFv’s), and uncertainty in a parameter is characterized with a series of
different point estimates from a probability distribution for uncertainty (PDFu) (e.g., 95% lower
confidence limit LCL [95% LCL], sample mean, and 95% UCL). In a 2-D MCA simulation, variability
is characterized in one or more variables using PDFv’s, and uncertainty in one or more parameters is
characterized with PDFu’s. With both approaches, the influence of the parameter uncertainty can be
presented as a credible interval or confidence interval (CI) around the risk distribution, depending on
how the PDFu’s are defined. When only a few sources of parameter uncertainty are quantified, multiple
1-D MCA simulations are preferred over a 2-D MCA because the approach is easier to use and
communicate. However, if the goal is to explore the effect that many sources of parameter uncertainty
may have on the risk estimates simultaneously, a 2-D MCA is preferred. Iterative 1-D MCA simulations
with different combinations of confidence limits may be impractical.

Table 3-1. Methods for Characterizing Parameter Uncertainty with Monte Carlo Simulations.

Approach Example of Model Input Method Example of Model Output
Single Point * 95% UCL 1-D MCA |PDFv' for risk, calculated using the 95%
Estimate UCL for one parameter.

Multiple Point * 95% LCL 1-D MCA |Three PDFv’s for risk, representing the
Estimates * sample mean 90% CI for each percentile of the risk
* 95% UCL distribution.? The 90% CI only accounts

for uncertainty in a single parameter (not
multiple parameters).

Parametric PDFu for the mean based on the 2-D MCA |One PDFv for risk with confidence
PDFu' sampling distribution, derived from intervals at each percentile of the risk
a Student’s ¢-distribution. distribution. The CI reflects uncertainty in

one or more parameters.

Non-parametric [PDFu for the mean based on 2-D MCA |[Same as parametric probability distribution
PDFu bootstrap resampling methods. for uncertainty.

'Probability distribution for uncertainty (PDFu) and probability distribution for variability (PDFv).

*The 95% UCL for the concentration term represents a 1-sided confidence interval (CI), meaning there is a 95% probability that
the value is greater than or equal to the mean. Similarly, the 95% LCL would represent the 1-sided CI in which there is a 95%
probability that the value is /ess than or equal to the mean. Both values are percentiles on the probability distribution for
uncertainty (PDFu), also called the sampling distribution for the mean. Together, the 95% LCL and 95% UCL are equal to the
2-sided 90% confidence interval only for cases in which the PDFu is symmetric. For example, the sampling distribution for the
arithmetic mean of a sample from a normal distribution with an unknown variance is described with the symmetric Student’s
t-distribution, whereas the PDFu for the mean of a lognormal distribution is asymmetric. In order to compare the results of
multiple 1-D MCA simulations and a 2-D MCA simulation, the same methodology should be employed to define the PDFu and
the corresponding confidence limits.
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It is generally incorrect to combine a PDFu for one parameter (e.g., mean of the concentration
term) with one or more PDFV’s in other exposure factors when conducting a 1-D MCA for variability.
However, distributions for uncertainty and variability may be appropriately combined in a 2-D MCA. As
discussed in Appendix D, with 2-D MCA, a clear distinction should be made between probability
distributions that characterize variability (PDFv) and parameter uncertainty (PDFu). A 2-D MCA
propagates the uncertainty and variability distributions separately through an exposure model, thereby
making it possible to evaluate the effect of each on the risk estimates.

Example: Comparison of Multiple Point Estimates of Uncertainty in 1-D MCA, and Distributions of
Uncertainty in 2-D MCA

Table 3-2 illustrates an application of the approaches presented in Table 3-1 for quantifying
variability and parameter uncertainty. This is a hypothetical example, and no attempt was made to use
standard default assumptions for exposure variables. Two sources of variability are quantified: (1) inter-
individual variability in exposure frequency (EF), characterized by a triangular distribution, and (2) inter-
individual variability in exposure duration (ED), characterized by a truncated lognormal distribution. In
addition, two sources of uncertainty are presented: (1) a point estimate for soil and dust ingestion rate,
intended to characterize the RME; and (2) an upper truncation limit of the lognormal distribution for ED,
intended to represent a plausible upper bound for the exposed population. Methods for quantifying these
sources of uncertainty are discussed below. Additional sources of uncertainty may also have been
explored. For example, the choice of a triangular distribution for a PDFv may be provocative for some
risk assessors, since there are few cases in which empirical data suggest a random sample is from a
triangular distribution. Nevertheless, triangular distributions may be considered rough, or “preliminary”
distributions (see Chapter 2 and Appendix B, Section B.2) for cases when the available information
supports a plausible range and central tendency.

The choice of distributions is a potential source of uncertainty that can be explored by rerunning
simulations with each alternative, plausible choice, and examining the effect on the RME risk.
Simulations with preliminary simulations may yield at least three different outcomes. First, this type of
sensitivity analysis can help guide efforts to improve characterizations of variability for selected
variables that have the greatest affect on the risk estimates. Second, results may provide justification to
exit the tiered process without continuing with additional Monte Carlo simulations since further effort
would be unlikely to change the risk management decision. Finally, if the major sources of uncertainty
can be clearly identified, a subset of the less sensitive variables may be defined by point estimates
without significantly reducing the uncertainty in the risk estimates.

Parameter uncertainty can be quantified for both point estimates and PDFv’s. In this example,
both types of inputs (i.e., point estimates and PDFv’s) are presented as sources of parameter uncertainty:
the RME point estimate for soil and dust ingestion rate (IRsd), and the upper truncation limit on a PDFv
for ED. For IRsd, assume that three different studies provide equally plausible values for the RME: 50,
100, and 200 mg/day. A uniform PDFu is specified to characterize this range of plausible values. For
ED, assume that the maximum value reported from a site-specific survey was 26 years, but surrogate data
for other populations suggest the maximum may be as long as 40 years. A uniform PDFu is specified to
characterize this range of plausible values as well.

In Cases 1-3, the impact of uncertainty in IRsd and ED was evaluated using a series 1-D MCA
simulations. Inputs for uncertain parameters associated with IRsd and ED in Case 1, 2, and 3 represent
the minimum, central tendency, and maximum values, respectively. Each simulation yields a different
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risk distribution based on different combinations of point estimates for parameters. Although a PDFu
was specified for IRsd, it would have been incorrect to combine the PDFu with the PDFv’s for EF and
ED in a 1-D MCA because the result would have been a single distribution of risk that co-mingled
uncertainty and variability.

In Case 4, a single 2-D MCA simulation was run using the PDFu’s for uncertainty and the
PDFv’s for variability. By propagating variability and uncertainty separately, the 2-D MCA yields a
series of distributions of risk, from which credible intervals can be calculated for each percentile of the
CDF.

_CxIRxGFxEFxED

Risk % CISF,.
BW x AT i
Table 3-2. Example of 1-D MCA and 2-D MCA.
Type of 1-D MCA 2-D MCA
Variable Input
Case 1 Case 2 Case 3 Case 4
C (mg/kg) pt estimate 500 500 500 500
IRsd pt estimate 50 100 200 see below
(mg/day)
PDFu for -- -- -- uniform (50, 200)*
pt estimate
CF (kg/mg) pt estimate 1E-06 1E-06 1E-06 1E-06
EF PDFv triangular triangular triangular triangular
(days/year) min =200 min =200 min =200 min =200
mode =250 mode =250 mode =250 mode =250
max = 350 max = 350 max = 350 max = 350
ED (years) PDFv T-lognormal T-lognormal T-lognormal T-lognormal
mean =9 mean = 9 mean = 9 mean =9
stdv =10 stdv =10 stdv =10 stdev =10
max = 26 max = 33 max = 40 max = PDFu (see below)
PDFu for -- -- -- max ~ uniform (26, 40)°
parameter of
PDFv
BW (kg) pt estimate 70 70 70 70
AT (days) pt estimate 25550 25550 25550 25550
CSF pt estimate 1E-01 1E-01 1E-01 1E-01
(mg/kg-day)”!

*Uncertainty in the RME point estimate, defined by a uniform distribution with parameters (minimum, maximum).
"Uncertainty in the upper truncation limit of the lognormal distribution, defined by a PDFv with parameters (mean, standard
deviation, maximum) and a PDFu for the maximum defined by a uniform distribution with parameters (minimum,
maximum).
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Monte Carlo Simulation Results

Figures 3-3 and 3-4 illustrate CDFs for risk produced from Monte Carlo simulations using
Crystal Ball® 2000. The 1-D MCA simulations (Figure 3-3) were run with 10,000 iterations and Latin
Hypercube sampling. The 2-D MCA simulation (Figure 3-4) was run with 250 iterations of the outer
loop (uncertainty) and 2,000 iterations of the inner loop (variability). Details regarding 2-D MCA
simulation are given in Appendix D.

Figure 3-3 shows CDFs for risk based on three simulations of a 1-D MCA simulation. Each
simulation used a different combination of plausible estimates of the RME value for IRsd and the upper
truncation limit for ED, as discussed above. The results provide a bounding estimate on the risk
distribution given these two sources of uncertainty. The 95" percentile risk, highlighted as an example of
the RME risk estimate, may range from approximately 7E-06 to 3.5E-05.

Figure 3-4 shows a single CDF for risk, representing the central tendency risk distribution. This
CDF was derived by simulating uncertainty in the risk distribution using 2-D MCA. For this example,
the 2-D MCA yields 250 simulations of the risk distributions for variability, so that there are
250 plausible estimates of each percentile of the risk distribution. In practice, more than 250 simulations
may be needed to adequately quantify uncertainty in the risk distribution. Results of a 2-D MCA can be
presented as probability distributions of uncertainty, or box-and-whisker plots of uncertainty at selected
percentiles of the risk distributions. Figure 3-4 shows the central tendency (50" percentile) estimate of
uncertainty for the entire CDF of risk. In addition, a box-and-whisker plot is shown at the 95" percentile
of the CDF. Selected statistics for the box-and-whisker plot are included in a text box on the graphic
(i.e., minimum; 5®, 50", and 95" percentiles, and maximum). The 90% credible interval is given by the
5™ and 95" percentiles. For this example, the 90% credible interval for the 95" percentile of the risk
distribution is: [9.1E-06, 3.1E-05].

Figures 3-3 and 3-4 demonstrate that the two approaches (i.e., multiple 1-D MCA and 2-D MCA)
can yield the same results. However, when there are numerous sources of uncertainty, 2-D MCA offers
at least two advantages over multiple 1-D MCA simulations: (1) 2-D MCA allows the multiple sources of
uncertainty to be included simultaneously so the approach is more efficient than a series of 1-D MCA
simulations; and (2) multiple 1-D MCA simulations yield multiple estimates of the RME risk, but it is not
possible to characterize the uncertainty in the RME risk in quantitative terms; a 2-D MCA yields a PDFu
for RME risk, which allows for statements regarding the level of certainty that the RME risk is above or
below a risk level of concern.

The 95" percentile is a focus of this example because it is a recommended starting point for
determining the risk corresponding to the RME. Chapter 7 provides guidance to the risk decision makers
on choosing an appropriate percentile (on a distribution of variability) within the RME risk range (90" to
99.9" percentiles). The chapter also includes a qualitative consideration of the uncertainty or confidence
surrounding a risk estimate in the decision-making process.
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Figure 3-3
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3.4.2 SCENARIO AND MODEL UNCERTAINTY

All models are simplified representations of complex biological and physical processes. As
such, they, and the scenarios to which they are applied, may introduce a significant source of uncertainty
into an exposure and risk estimate. Models may exclude important variables or important pathways of
exposure, ignore interactions between inputs, use surrogate variables that are different from the target
variables, or they may be designed for specific scenarios and not others. As a result, a model may not
adequately represent all aspects of the phenomena it was intended to approximate or it may not be
appropriate to predict outcomes for a different type of scenario. For example, a model intended to
estimate risk from continuous, steady state exposures to a contaminant may not be appropriate or
applicable for estimating risk from acute or subchronic exposure events. In any risk assessment, it is
important to understand the original intent of a model, the assumptions being made in a model, what the
parameters represent, and how they interact. Based on this knowledge, one can begin to understand how
representative and applicable (or inapplicable) a model may be to a given scenario. If multiple models
exist that can be applied to a given scenario, it may be useful to compare and contrast results in order to
understand the potential implications of the differences. The use of multiple models, or models with
varying levels of sophistication, may provide valuable information on the uncertainty introduced into a
risk estimate as the result of model or scenario uncertainty. The collection of measured data as a reality
check against a given parameter or the predicted model outcome (such as the collection of vegetable and
fruit contaminant data to compare against modeled uptake into plants) is also useful in attempting to
reduce or at least gain a better understanding of model and scenario uncertainty.

3.5 ExaAMPLE OF PRA FOR HUMAN HEALTH

The following hypothetical example provides a conceptual walk-through of the tiered approach
for PRA in Superfund risk assessment. The example begins with a baseline human health point estimate
risk assessment (Tier 1) and moves to Tier 2, in which multiple iterations of a 1-D MCA are run using
default and site-specific assumptions for input distributions. The general concepts associated with the
tiered approach are discussed in Chapter 2, and a similar example for ecological risk assessment is given
in Chapter 4. The 1-D MCA results are based on simulations with Crystal Bal/® 2000 using
10,000 iterations and Latin Hypercube sampling. These settings were sufficient to obtain stability (i.e.,
<1% difference) in the 95% percentile risk estimate. The example is presented in Exhibit 3-5. Tables
and figures supporting the example are given immediately following the exhibit.
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EXHIBIT 3-5
USING THE TIERED PROCESS FOR PRA
HYPOTHETICAL CASE STUDY FOR HUMAN HEALTH RISK ASSESSMENT

RI Planning/Scop mg/Problem FormulationData Collection

Site Deseription: Former federal facilitsy

Site Size: 100 acres (5 acres within spill area (I54); 95 acres outeide spill area (O3 4))
Stakeholders: Refuge ermploees, ervironrnental activists, ete.

Land Use: Futare wildlife refuge

Receptors: Fubure wildlife refuge workers (1e., omithologists and fisherybiologists)
Sarnpling Data: n=35 swface soil sarmples (see Figure 3-5 for sample locations)
Cherrdeal of Coneern: Chencl

Cherdcal Properties: Nomwvolatile
Toxicological Properties: Carcinogern: CSF
Honcareinogenic health data ave lacking
Risk Level of Concerr: 1E-04 for cancer

and C5F

deimd

= 55E-02, CSF,,= 2.73E-02,

¥

Tier 1 Point Estimate | - Baseline Risk Assessment

Exposure Unit: (zee Fizure 3-5) omithologist (exposed in O5 A) and fisheryhiologist
(exposed v IS4

Exposure Pathwaye: Ingestion of soilidust; inhalation of fugitie dust, denral sheorption
Concenfration Terra: 953% UCL for arithtoetic rean (Tahkle 3-3)

Rigk Equations: Exlabit 3-6

Exposure Paratneters: Table 3-4

Results: Tahle 3-5

¥

@ Is the Information Sufficient for Risk Management Decisions?

Sensitivity Snalyeis | IdentifiyData | Commamication |  PRA& work | ot
Diiscussion GapsMeeds | With Stakeholders | Discussion | FPlanming T

Stakeholder raee fing iz corerened —point estivnate results ave discuzsed and ideas are exchanged

as follows:

= Risk estitnates are expected to be conservative due to the use of standard defanlt
exposure pararneters, but are the defaults re presentative?

= Stakeholders are concerned about risk to workers and about the consecue nee s of
rernediation (e 2., negative impacts on habitat and potertial job losses).

= Stakeholders are concerned about the relevance of aome nonsite-specific expomure
vatiahles (e 2., exposure duration), but are not sure which varnahles fo rrestigate
further (1., which is the most influential? ).

= Besults of the sensitrvity analysis from point estimate risk assessment cannot
identify where the high end risk estimate fallson the risk distdution.

»  There is sufficient inforrmation (e.g., arithenetic mean, standard deviation,
petcentiles) for some of the exposme variables to develop indtial probability
distributions to characterize wariability.

l (contirmed on next page)
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(contirned)

Is the Information Sufficient for Risk Management Decisions? (continued)

Inade 3l Area(I3A) Chtside Spall Area (O5A)
F VT SRStk 1 SO b e - RME sisk estimate: 6.6E-035 (Table 3-5)
RME petcent corfribution to risk by o ;
pathew ay: Table 3-3 (inhal stion adds a » RME percent cortritntionto risk by
minimal conteitnition to totsl rigs ez, pathwrasr Table 3-5
=1%) *  RME tisk estimate iz less than the level
EME rigk estimateis greater than the lewvel of conwern(1E-04) by afartor of 0.7
DfCDﬂEEmI:].E-D"—U hjr&fﬂﬂt-l:li’ of 2.4 - FME tisk estimate iz saufficlent for risl
EME risk estimateis close to the lewel of managemett decisions because point
cotwerty and therefore informati on oay not ; g
v sufficient estimmate resilts are protective

Mo Yes
¥
Refine Point Estimate Analysis
Only! Compleie
RIFS Process

Mo firther changes to the point estim e are possible without more data.
Ieformation from a PRA mayinfluence the sk managemernt decision by
- [dentifying where on the risk distribotion the ridk estimate falls,

- Identifying data gaps hrough amore advanced sensiti vty analyais(ie,
whi ch watiabl es woul d benefit from additionsl data collection due to their
influence ot the risk estimate?)

Mo

¥

Tier 2 Probabilistic Estimate |— Conduct a Preliminary 1-I) MCA for Variahility

Exposwe Unit: [nside 3pil Area (Fishery biologist) (see Figore 3-5)

Exposwe Pattowrays: Soil ingestion and dermoal absorpt o, inhalation e cdluded (1% of total rigk)
C oncentration Termm: 359 UCL on arithmetic mean I34 (see Table 3-3)

Probatilitsy Distriboati ong and Parameters: See Table3-6

Results: Jee Table 3.7

(contirned on next page)
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([ otutivsed)

@ Is the Information Sufficient for Rislkk Management Decisions?

Seraitivity Analysis | Tdertifir Data | Communication PRA Wotk Hﬁ&iﬁiﬂl
Diizcussl on Gapelleeds | WithStakeholders | Discussion Platwitz Data

S takebiol der meeeting is corrverned—1-10 LT A reqits are discussed andideas are exchanged:
= Sensitivity atalysis from the 1-DMCA demonstrates that exposure duration, soil
itugestion tate, hody weight, and adherence factor ate the most sensitive variables (zee
Figwe 3-6).
= Additional data collection efforts for exposure duration data specific to fishery
hiclogistsis feasitle

= Preliminay FRA suggests that the Tier 1 RME poirt estimate rigs in [34 (e, 24E-04)
cotrespotuds with the 99 per cerdile of the risk distritngion
*  PRA results show that the RIWE risk range (e, 90% t0 99 9% percentile) is 1 E-04 to 4E-0d.

= Information from a preliminaty 1-D WCA may not be sufficient for a sk management

decizion as the RME tisk range is suffi ciertly close to the level of concern to watrart Sarther
irrve st gati o

Mo

Refined PRA
Analysis Only?

= BRME risk range is aafficiently close to the lewel of coticern to warrarnt
further irnve st gati on

= DMorerigorous process fior fitting di stittions to selected varidhles (e.g,
IF_sod, 34 skin et may influence risk managemert decisiory, andlevel
of eff ot is reasonable; therefore proceed with a refined 1-D MC A

Yes
(oottitme d o next page)
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Yes
([ cotitiroaed)

Tier 2 Refined PRA| - Conduct Refined 1-D MCA and Refined Point Estimate

= Exposwe Unit: Fisherybiologist-ins de spill avea (ISA) (zee Figare 3-3)
= Exposwe Palwrays: Ingesion of sod and dust, and dermal absorption
= Concertration Term: 95% UCL on arittenetic mean

= Probability DistringionaParameters: see Table 3-2 for sample data and sumimary statistics,
expomte dhrati o defined by lognormal PDF Carithwetic mearel 4, 3D=0 4 wpper

truncati oty of 44 years)

*  Resits: see Tahle 3-9
(@ Is the Information Sufficient for Risk Managerment Decisions?

Setsitivty Analysis | [dentifyy Data | © ommond cation PRA Wtk ﬂcd;il:iemal
Discussion GapsMeeds | With Stakeholders | Discussion | Plarnming Dat;n

Stakeholders meetingis corrvened. Refined 1-D IIC A results are discussed and ideas are
exchatniged as follows:

» Bensitivity analysis from refined 1-D MCA indicates that the vse of site-specific data
did not sigrificardly alter the relative ranking or magribade of rank correlations for
irgoat variables (similar graphic asFiguare 3-6).

= Refined 1-D MCA remits suggest that the refined RMWE point estitmate risk
coryesponds with the 99% percentile of the risk distritntion(Takle 3-9,

= Refined 1-D MCA resits show that the RWE range (i e, 90%t0 99 9% percentil€) is
1 E-04 to 3E-04, with95% percentile of 2.1 E-04.

= Information from refined 1-D MO A iz sufficient for risk managem ent decis on
because the RIVE rigk (05t percertile) is ahove the lewel of coteern of 1E-04 using
site specific exposure duration dats, and additional data collection on IR soil term is
not warrarted. Complete BLES process.

Yes

Complete RLFS Process

= Ztakeholders and FPL decide that the best remedial
alterriative istoremowve suface sod inthe 5 acre spill
atea atwd covet the refuge area with clean fill before
be girming refiige cofstract on.

Page 3-21



RAGS Volume 3 Part A ~ Process for Conducting Probabilistic Risk Assessment
Chapter 3 ~ December 31, 2001

o

Exposure Unit

Boundary
Soil Sample

Location

—— Hot Spot

Boundary

Figure 3-5. Site map for future wildlife refuge showing boundaries for the exposure
unit and potential hotspot, as well as sampling locations (n=35). Sample numbers
correspond with concentration data given in Table 3-3.

Table 3-3. Concentrations in Surface Soil (mg/kg).

'The 95% UCL was estimated using the Land method (see Appendix C).

Chitzide Spill Avea (n=200 Tnaide Spill Area(n=15)
1088 305 1934 o0 Statictics | Oniside Spill Avea  |Inside Spill Area
Lt 8T 412 DE5 Iilean 1247 37
3045 T6E0 45 145 Standard Devdation 1121 53
14 148 1121 158 05, UCL 2303 2444
3704 1028 20 21296
a5 a37 2.3
45 1295 &7
3&8Y 1238 2E
1438 1006 57
2502 253 LE
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Soil Ingestion

Total Risk

Where:

EXHIBIT 3-6

RiSK EQUATIONS

Dermal Absorption

Inhalation of Fugitive Dust

Risk = Cs x CF xIRsx FIx EF X ED x Oral CSF
BW x AT

Risk = Cs xCF x SA x AF x ABS x EF X ED x Dermal-Adjusted CSF
BW x AT

Risk = Cs x 1/PEF xIRax ET x EF X ED x Inhalation CSF
BW x AT

= Sum of risks from each exposure pathway (soil + dermal + inhalation)

Cs = Concentration of ChemX in soil (mg/kg)

IRs = Soil ingestion rate for receptor (mg/day)

FI = Fraction ingested from contaminated source (unitless)
CF = Conversion factor (1E-06 kg/mg)

SA = Skin surface area available for exposure (cm*event)
AF = Soil to skin adherence factor for ChemX (mg/cm?)
ABS = Absorption factor for ChemX (unitless)

[Ra = Inhalation rate for receptor (m*/hr)

PEF = Soil-to-air particulate emission factor (kg/m®)

ET = Exposure time for receptor (hours/day)

EF = Exposure frequency for receptor (days/year)

ED = Exposure duration for receptor (years)

BW = Body weight of receptor (kg)

AT = Averaging time (years)

CSF = Cancer slope factor (oral, dermal, inhalation) (mg/kg-day)_1
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Table 3-4. Exposure Parameters used in Point Estimate Analysis.

Exposure CTE RME Units Reference

Variable Value Value

IRs 50 100 mg/day CTE: U.S. EPA, 1997a, p. 4-25
RME: U.S. EPA, 2001

FI 0.5 1 unitless Site-specific

CF 1E-06 1E-06 kg/mg Constant

SA 3300 3300 cm?/event U.S. EPA, 2001, 50 percentile value for all adult
workers—exposure to face, forearms, and hands

AF 0.1 0.2 rng/crn2 CTE: U.S. EPA, 1998; Table 3.3, value for
gardeners
RME: U.S. EPA, 2001

ABS 0.1 0.1 unitless U.S. EPA, 1998, default for semi-volatile organic
compounds (SVOCs)

IRa 1.3 3.3 m/hr U.S. EPA, 1997a, p. 5-24, outdoor worker hourly
average: mean and upper percentile

PEF 1.36E+09 1.36E+09 kg/m? U.S. EPA, 2001

ET 8 8 hours/day Site-specific

EF 200 225 days/year CTE: Site-specific assumption
RME: U.S. EPA, 2001

ED 5 25 years CTE: U.S. EPA, 1993,p. 6
RME: U.S. EPA, 2001

BW 70 70 kg U.S. EPA, 1993,p.7

AT 25550 25550 days constant

CTE = central tendency exposure; RME = reasonable maximum exposure.

Table 3-5. Point Estimate Risks and Exposure Pathway Contributions.

Risk Estimate

by Exposure Pathway

Inside Spill Area (n = 15)

Outside Spill Area (n =20)

CTE

RME

CTE

RME

Soil Ingestion

6.5E-06 (43 %)

1.5E-04 (60 %)

1.7E-06 (43 %)

4.0E-05 (60 %)

Dermal Absorption

8.6E-06 (57 %)

9.6E-05 (40 %)

2.3E-06 (57 %)

2.6E-05 (40 %)

Inhalation

9.9E-10 (< 1 %)

1.4E-08 (< 1 %)

2.7E-10 (< 1 %)

3.8E-09 (< 1 %)

Total Risk

1.5E-05

2.4E-04

4.1E-06

6.6E-05

Example of % contribution: % Soil for RME risk inside spill area = (Soil risk / Total risk) x 100%
= (1.46E-04 / 2.42E-04) x 100% = 60%
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Table 3-6. Input Distributions for Exposure Variables used in 1-D MCA for Variability.

Exposure Distribution Parameters> Units Reference

Variable! Type

IR soil Triangular 0, 50, 100 mg/day U.S. EPA, 1993, 2001

SA_skin® Lognormal 18150,37.4 | cm? U.S. EPA, 1997a, Table 6-4
(Total male/female body surface area)

Absorption Uniform 0.1,0.2 mg/cm2 U.S. EPA, 2001; minimum truncation limit is

Fraction professional judgment

IR air Lognormal 1.68,0.72 m*/hour U.S. EPA, 1996, p.5-10

EF Triangular 200, 225,250 | days U.S. EPA, 2001; truncation limits are
professional judgment

ED Lognormal4 11.7, 7.0 years U.S. EPA, 1997b, Table 15-161 and U.S. EPA,
2001

(Mean value is based on average of total median
tenure for professional specialty and farming,
forestry, and fishing)

Truncated 14.0, 9.4, years Site-specific survey data, used in refined
Lognormal® 44.0 1-D MCA
BW Lognormal 71.75,14.2 kg U.S. EPA, 1997a, Tables 7-4 and 7-5;
(Combined male/female body weight
distributions)

'All other exposure parameters are inputted as point estimates (see Table 3-4).

*Parameters for lognormal PDF are X ~ Lognormal (arithmetic mean, arithmetic standard deviation) unless otherwise stated.
Parameters for triangular PDF are X ~ Triangular (minimum, mode, maximum). Parameters for uniform PDF are X ~ Uniform
(minimum, maximum).

*A point estimate of 0.189 was used to adjust the surface area skin (SA_skin) distribution, which is based on total body surface
area, to account for skin exposures limited to face, forearms, and hands (U.S. EPA, 1997a, Vol. ).

*Parameters for preliminary lognormal PDF for ED were converted from a geometric mean of 10 and a 95™ percentile of 25.
Parameters for site-specific lognormal PDF for ED are arithmetic mean, standard deviation, and upper truncation limit.

Table 3-7. 1-D MCA Risk Estimates using Preliminary Inputs.

Cumulative Spill Area Risk
Percentile
50th 5.7E-05
90th 1.3E-04
95th 1.6E-04
99th 2.4E-04
99.9th 3.9E-04
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Figure 3-6. Results of sensitivity analysis for preliminary 1-D MCA (Tier 2)
showing the Spearman Rank correlations (see Appendix A and B) between input
variables and risk estimates.

Table 3-8. Exposure Duration Survey Results.

Survey Results (years) Summary Statistics
24.9 20.3 172 | n 20
8.4 11.7 6.5 | min 3.0
3.0 4.7 16.5 | max 44.2
6.8 20.9 6.0 | arithmetic mean 14.0
18.5 10.6 18.8 | standard dev 9.4
9.1 12.7 11.7 | median/GM 11.7
7.2 44.2 GSD 1.8

Table 3-9. Refined Point Estimate and 1-D M CA Risk Estimates.

Cumulative Percentile Spill Area Risk
Refined RME 3 1E-04
Point Estimate

S 6.7E-05
90th 1.6E-04
95th 2.1E-04
99th 3.2E-04

99.9th 5.3E-04
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